二元一次方程组:
(1){a11x1+a12x2=b1a21x1+a22x2=b2 \left\{ \begin{array}{l} a_{11}x_1+a_{12}x_2=b_1\\ a_{21}x_1+a_{22}x_2=b_2 \end{array}\right. \tag{1} { a11x1+a12x2=b1a21x1+a22x2=b2(1)行列式:
D=∣a11a12a21a22∣=a11a22−a12a21 D= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} =a_{11} a_{22} - a_{12}a_{21} D=∣∣∣∣a11a21a12a22∣∣∣∣=a11a22−a12a21D1=∣b1a12b2a22∣=b1a22−a12b2 D_1= \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12}b_2 D1=∣∣∣∣b1b2a12a22∣∣∣∣=b1a22−a12b2
D2=∣a11b1a21b2∣=a11b2−b1a21 D_2= \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} =a_{11}b_2 - b_1a_{21} D2=∣∣∣∣a11a21b1b2∣∣∣∣=a11b2−b1a21
方程组的解:
若D≠0D\neq0D̸=0,方程组有唯一解:(2)x1=D1D,x2=D2Dx_1=\dfrac {D_1}D,x_2=\dfrac {D_2}D \tag{2}x1=DD1,x2=DD2(2) 其中,系数行列式DDD是由方程组系数按照原排列组成的行列式;D1D_1D1是由DDD中x1x_1x1系数所在列对应换成常数项组成的行列式;D2D_2D2是由DDD中x2x_2x2系数所在列对应换成常数项组成的行列式。